Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(5): 109, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466427

RESUMO

Bacteria producing urea amidohydrolases (UA) and carbonic anhydrases (CA) are of great importance in civil engineering as these enzymes are responsible for microbially induced calcium carbonate precipitation (MICCP). In this investigation, genomic insights of Bacillus paranthracis CT5 and the expression of genes underlying in MICCP were studied. B. paranthracis produced a maximum level of UA (669.3 U/ml) and CA (125 U/ml) on 5th day of incubation and precipitated 197 mg/100 ml CaCO3 after 7 days of incubation. After 28 days of curing, compressive strength of bacterial admixed and bacterial cured (B-B) specimens was 13.7% higher compared to water-mixed and water-cured (W-W) specimens. A significant decrease in water absorption was observed in bacterial-cured specimens compared to water-cured specimens after 28 days of curing. For genome analysis, reads were assembled de novo producing 5,402,771 bp assembly with N50 of 273,050 bp. RAST annotation detected six amidohydrolase and three carbonic anhydrase genes. Among 5700 coding sequences found in genome, COG gene annotation grouped 4360 genes into COG categories with highest number of genes to transcription (435 genes), amino acid transport and metabolism (362 genes) along with cell wall/membrane/envelope biogenesis and ion transport and metabolism. KEGG functional classification predicted 223 pathways consisting of 1,960 genes and the highest number of genes belongs to two-component system (101 genes) and ABC transporter pathways (98 genes) enabling bacteria to sense and respond to environmental signals and actively transport various minerals and organic molecules, which facilitate the active transport of molecules required for MICCP.


Assuntos
Bacillus , Biomineralização , Anidrases Carbônicas , Bactérias/metabolismo , Carbonato de Cálcio/química , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Anotação de Sequência Molecular , Água/metabolismo , Urease
2.
Front Endocrinol (Lausanne) ; 13: 847692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498404

RESUMO

To assess the burden of type 2 diabetes (T2D) and its genetic profile in endogamous populations of India given the paucity of data, we aimed to determine the prevalence of T2D and estimate its heritability using family-based cohorts from three distinct Endogamous Ethnic Groups (EEGs) representing Northern (Rajasthan [Agarwals: AG]) and Southern (Tamil Nadu [Chettiars: CH] and Andhra Pradesh [Reddys: RE]) states of India. For comparison, family-based data collected previously from another North Indian Punjabi Sikh (SI) EEG was used. In addition, we examined various T2D-related cardiometabolic traits and determined their heritabilities. These studies were conducted as part of the Indian Diabetes Genetic Studies in collaboration with US (INDIGENIUS) Consortium. The pedigree, demographic, phenotypic, covariate data and samples were collected from the CH, AG, and RE EEGs. The status of T2D was defined by ADA guidelines (fasting glucose ≥ 126 mg/dl or HbA1c ≥ 6.5% and/or use of diabetes medication/history). The prevalence of T2D in CH (N = 517, families = 21, mean age = 47y, mean BMI = 27), AG (N = 530, Families = 25, mean age = 43y, mean BMI = 27), and RE (N = 500, Families = 22, mean age = 46y, mean BMI = 27) was found to be 33%, 37%, and 36%, respectively, Also, the study participants from these EEGs were found to be at increased cardiometabolic risk (e.g., obesity and prediabetes). Similar characteristics for the SI EEG (N = 1,260, Families = 324, Age = 51y, BMI = 27, T2D = 75%) were obtained previously. We used the variance components approach to carry out genetic analyses after adjusting for covariate effects. The heritability (h2) estimates of T2D in the CH, RE, SI, and AG were found to be 30%, 46%, 54%, and 82% respectively, and statistically significant (P ≤ 0.05). Other T2D related traits (e.g., BMI, lipids, blood pressure) in AG, CH, and RE EEGs exhibited strong additive genetic influences (h2 range: 17% [triglycerides/AG and hs-CRP/RE] - 86% [glucose/non-T2D/AG]). Our findings highlight the high burden of T2D in Indian EEGs with significant and differential additive genetic influences on T2D and related traits.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Adulto , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Etnicidade/genética , Glucose , Humanos , Índia/epidemiologia , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...